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1 The Entropy Rate of Shift-Invariant Measures

1.1 Recap

Our alphabet is AZd
as before, and we have been moving around finite windows W ⊆ Zd

and looking at what patterns appear. The empirical distribution of x in W is

PWx =
1

|{v : v +W ⊆ B}|
∑

v+W⊆B
δv+W (x ∈ AB).

Last time, we saw that if U is an open, convex subset of P (AW ) (or RAW
), then

|{x ∈ AB : PWx ∈ U}|︸ ︷︷ ︸
=:ΩB(W,U)

= e|B|·s(U)+o(|B|),

if U ∩ {s > −∞} 6= ∅ or U ∩ {s > −∞} = ∅. Here, s(U) = sup{s(x) : x ∈ U}. We have
not yet verified that if U ⊆ U1∪· · ·∪Uk, then s(U) ≤ maxi s(Ui), but this is a quick check.

1.2 Counting microscopic configurations by their empirical measures —
consistency of the entropy rate

If W ⊆W ′, B is large, and π : AW
′ → AW is the projection, then

π∗P
W ′
x = PWx +O

(
|W |

min-side-length(B)

)
As a result, inside P (AZd

), consider weak* open sets of the form Û := {µ ∈ P (AZd
) : µW ∈

U} for some finite W ⊆ Zd and open convex U ⊆ P (AW ), where µ 7→ µW is the projection

of µ to AW . These sets form a base U for the weak* topology on P (AZd
).

We would like to try to define

s(Û) := s(U),
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where the right hand side is defined using the particular window W . We must show that
this is consistent with respect to the choice of W : We want s(W )(U) = s(W ′)(U ′) whenever
U ⊆ P (AW ) is open and convex and U ′ = {ν ∈ P (AW

′
) : νW ∈ U}. This holds because of

the result proven last time:
If U and U ′ are as above, assume U ∩ {s(W ) > −∞} ∩ ∅ or U ∩ {s(W ) > −∞} = ∅.

This condition implies that

inf
δ>0

s(W )(Bδ(U)) = s(W )(U) = sup
δ>0

s(W )(Uδ).

Now observe from the aforementioned result that for any δ > 0, if B is large enough,

PWx ∈ U =⇒ (PW
′

x )W = PWx +O

(
|W |

min-side-length(B)

)
.

Hence,
|ΩB(W,U)| ≤ |ΩB(W ′, U ′)|,

and similarly,
|ΩB(W,U)| ≥ |ΩB(W ′, U ′)|.

Now let B ↑ Zd and then δ ↓ 0. Then set s(W ′)(U ′) = s(W )(U). We then obtain

|ΩB(Û)| = exp

(
|B| · sup

µ∈Û
s(µ) + o(|B|)

)
,

as B ↑ Zd. Interpret ΩB(Û) as ΩB(W,U) for any suitable W and U . Note that the
left hand side is not precisely well-defined, but it is asymptotically well-defined by these
considerations, so this statement still makes sense. This exponent function s is a concave,
upper semicontinuous function on M(AZd

).

1.3 The entropy rate of shift-invariant measures

Proposition 1.1. Consider the collection of measures

{µ ∈M(AZd
) : s(µ) > −∞} = {µ : ∀Bn ↑ Zd, ∃xn ∈ ABn s.t. PWxn → µW ∀W}.

This is contained in

P T (AZd
) = {µ ∈ P (AZd

) : shift-invariant, i.e. T v∗ µ = µ ∀v ∈ Zd},

where T v : AZd → AZd
sends 〈an〉n 7→ 〈an−v〉n and (T v∗ µ)(B) = µ(T−v(B)) for all Borel

B ⊆ AZd
.
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Proof. Here is the proof of shift invariance: Suppose Bn ↑ Zd and xn ∈ ABn are such that
PWxn → µW for all finite W ⊆ Zd. Pick a window V and a ∈ AV . We will show that
µV (A) = µV−u(a) for all u ∈ Zd.

Pick W ⊇ V ∪ (V − u), and let ψ1, ψ2 : AW → {0, 1} be defined by

ψ1(b) = 1{bV =a}, ψ2(b) = 1{bV−u=a}.

We know µW = limn P
W
xn , and so

µV (a) = (µW )V (a) = lim
n

(PWxn )V (a)

and
µV−u(a) = lim

n
(PWxn )V−u(a).

These respectively equal:

=
1

|{v : v +W ⊆ Bn}|
|{v : v +W ⊆ Bn, (xn)v+V = a}|,

=
1

|{v : v +W ⊆ Bn}|
|{v : v +W ⊆ Bn, (xn)v+V−u = a}|,

These will agree except for points on the boundary. So the difference is

µV (a)− µV−u(a) = O

(
(|v|+ |u|)|boundary of Bn|

|Bn|

)
n→∞−−−→ 0.

So T V∗ µ = µ.
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So {s > −∞} ⊆ P T (AZd
). We want to generalize the formula “s(p) = H(p) for

p ∈ P (A)” from the non-interacting case. To do this we need a digression into the properties
of Shannon entropy.

From before, we had that if p ∈ P (A), then

H(p) = −
∑
a∈A

p(a) log p(a).

Here is some notation: If α is an A-valued random variable and if the distribution of α is p:
P(α = a) = p(a), then H(α) = H(p). We interpret this as a measure of the “uncertainty”
in α.

Recall that 0 ≤ H(α) ≤ log |A|, where equality is achieved on the left iff α is determin-
istic (i.e. p = δa for some letter a) and equality on the right is achieved iff α ∼ Unif(A).
Next time, we will discuss some more properties of Shannon entropy and return to s(µ)

for µ ∈ P (AZd
).

4


	The Entropy Rate of Shift-Invariant Measures
	Recap
	Counting microscopic configurations by their empirical measures — consistency of the entropy rate
	The entropy rate of shift-invariant measures


